Sunday, February 23, 2014

Download CSI - ETABS full crack for free

Download CSI - ETABS full crack for free

Acronym of Extended 3D Analysis of Building Systems is software by a Computers and Structures,, Inc. (CSI); a Berkeley, California based engineering software company founded in 1975. ETABS is an engineering software product that can be used to analyze and design multi-story buildings using grid-like geometry, various methods of analysis and solution techniques, considering various load combinations.




ETABS is for linear, non-linear static and dynamic analysis, and the design of building systems.  The need of special software was there for analysis and design of building and structures, and thus CSI comes forward with the TABS series.

Use of ETABS

ETABS can be effectively used in the analysis and design of building structures which might consists of structural members like beams, columns, slabs, shear walls etc, With ETABS you can easily apply various construction materials to your structural members like concrete, structural steel, Reinforced Concrete etc. ETABS automatically generates the self-weights and the resultant gravity and lateral loads.

Advantages of ETABS

  •     ETABS allows graphical inputs of the various parameters like length or depth of members and thus the model generation is very fast
  •     ETABS uses a feature of similar stories where various properties and loads might be applied by selecting the option of similar stories.
  •     Easy options and commands are there in ETABS like copy, paste, mirror Merge etc.
  •     ETABS is very precise, the snapping of the ends and joints allows the dimensions to be accurate and least chance of error is there.
  •     Applying of loads and creation of objects is very easy just select properties and click where the member is proposed to be there.
  •     A lot of views are there, top, end side etc.
  •     It has a 3d view that can be zoomed and can be adjusted by Pan option.
  •     Integration with other softwares like SAP2000 or SAFE etc.
  •     Supports various codes like American Building Code, Eurocode, British Code, Indian Building      Code, Pakistan Building Code.
  •     Model and geometry of model can easily to be exported to .dxf files.


Comparison of ETABS and STAAD.pro

Staad.pro is another Structural and analysis and design program by bently corp. and is the most widely used structural software throughout the construction world Find more about STAAD.pro click here
    STAAD.pro is most widely used in ASIA.
    STAAD also allows the user to input the model data using text-editor facility where ASCII file is used for this purpose.
    ETABS in comparison is a bit advanced form having a lot of features not there in STAAD.
    STAAD.pro uses STAAD.Foudation for foundation design where as ETABS uses SAFE for foundation design.

 Download Link

Disclaimer:
The software name and its logo is the trademark of respective owner, we here on (allstudentsinf) doesn’t host the software neither uploaded it we are just sharing here the links to download; and are just for sharing it for student and education purpose

Your Feedback
I hope you will like this sharing; stay tuned for the remaining updates about this topic; and don’t forget to share it to your friend and buddies on facebook, twitter and gplus.

Thanks

The History of Building Construction (Bronze Age)

The History of Building Construction (Bronze Age)




It was the cultures of the great river valleys—including the Nile, the Tigris and Euphrates, the Indus, and the Huang Ho—with their intensive agriculture based on irrigation—that developed the first communities large enough to be called cities. These cities were built with a new building technology, based on the clay available on the riverbanks. The packed clay walls of earlier times were replaced by those constructed of prefabricated units: mud bricks. This represented a major conceptual change from the free forms of packed clay to the geometric modulation imposed by the rectangular brick, and the building plans too became strictly rectangular.

Bricks were made from mud and straw formed in a four-sided wooden frame, which was removed after evaporation had sufficiently hardened the contents. The bricks were then thoroughly dried in the sun. The straw acted as reinforcing to hold the brick together when the inevitable shrinkage cracks appeared during the drying process. The bricks were laid in walls with wet mud mortar or sometimes bitumen to join them together; openings were apparently supported by wooden lintels. In the warm, dry climates of the river valleys, weathering action was not a major problem, and the mud bricks were left exposed or covered with a layer of mud plaster. The roofs of these early urban buildings have disappeared, but it seems likely that they were supported by timber beams and were mostly flat, since there is little rainfall in these areas. Such mud brick or adobe construction is still widely used in the Middle East, Africa, Asia, and Latin America.

Later, about 3000 BC in Mesopotamia, the first fired bricks appeared. Ceramic pottery had been developing in these cultures for some time, and the techniques of kiln-firing were applied to bricks, which were made of the same clay. Because of their cost in labor and fuel, fired bricks were used at first only in areas of greater wear, such as pavements or the tops of walls subject to weathering. They were used not only in buildings but also to build sewers to drain waste water from cities. It is in the roofs of these underground drains that the first surviving true arches in brick are found, a humble beginning for what would become a major structural form. Corbel vaults and domes made of limestone rubble appeared at about the same time in Mesopotamian tombs. Corbel vaults are constructed of rows of masonry placed so that each row projects slightly beyond the one below, the two opposite walls thus meeting at the top. The arch and the vault may have been used in the roofs and floors of other buildings, but no examples have survived from this period. The well-developed masonry technology of Mesopotamia was used to build large structures of great masses of brick, such as the temple at Tepe Gawra and the ziggurats at Ur and Borsippa (Birs Nimrud), which were up to 26 meters (87 feet) high. These symbolic buildings marked the beginnings of architecture in this culture.


The development of bronze, and later iron, technology in this period led to the making of metal tools for working wood, such as axes and saws. Less effort was thus required to fell and work large trees. This led in turn to new developments in building Technics; timbers were cut and shaped extensively, hewed into square posts, sawed into planks, and split into shingles. Log cabin construction appeared in the forested areas of Europe, and timber framing became more sophisticated. Although the excavated remains are fragmentary, undoubtedly major advances were made in timber technology in this period; some of the products, such as the sawed plank and the shingle, are still used today.

The History of Building Construction ( The Stone Age)

The History of Building Construction ( The Stone Age)

Primitive building The Stone Age




The hunter-gatherers of the late Stone Age, who moved about a wide area in search of food, built the earliest temporary shelters that appear in the archaeological record. Excavations at a number of sites in Europe dated to before 12,000 BC show circular rings of stones that are believed to have formed part of such shelters. They may have braced crude huts made of wooden poles or have weighted down the walls of tents made of animal skins, presumably supported by central poles.

A tent illustrates the basic elements of environmental control that are the concern of building construction. The tent creates a membrane to shed rain and snow; cold water on the human skin absorbs body heat. The membrane reduces wind speed as well; air over the human skin also promotes heat loss. It controls heat transfer by keeping out the hot rays of the sun and confining heated air in cold weather. It also blocks out light and provides visual privacy. The membrane must be supported against the forces of gravity and wind; a structure is necessary. Membranes of hides are strong in tension (stresses imposed by stretching forces), but poles must be added to take compression (stresses imposed by compacting forces). Indeed, much of the history of building construction is the search for more sophisticated solutions to the same basic problems that the tent was set out to solve. The tent has continued in use to the present. The Saudi Arabian goats’ hair tent, the Mongolian yurt with its collapsible wooden frame and felt coverings, and the American Indian tepee with its multiple pole supports and double membrane are more refined and elegant descendants of the crude shelters of the early hunter-gatherers.

The agricultural revolution, dated to about 10,000 BC, gave a major impetus to building construction. People no longer traveled in search of game or followed their herds but stayed in one place to tend their fields. Dwellings began to be more permanent. Archaeological records are scanty, but in the Middle East are found the remains of whole villages of round dwellings called tholoi, whose walls are made of packed clay; all traces of roofs have disappeared. In Europe tholoi were built of dry-laid stone with domed roofs; there are still surviving examples (of more recent construction) of these beehive structures in the Alps. In later Middle Eastern tholoi a rectangular antechamber or entrance hall appeared, attached to the main circular chamber—the first examples of the rectangular plan form in building. Still later the circular form was dropped in favor of the rectangle as dwellings were divided into more rooms and more dwellings were placed together in settlements. The tholoi marked an important step in the search for durability; they were the beginning of masonry construction.

Evidence of composite building construction of clay and wood, the so-called wattle-and-daub method, is also found in Europe and the Middle East. The walls were made of small saplings or reeds, which were easy to cut with stone tools. They were driven into the ground, tied together laterally with vegetable fibers, and then plastered over with wet clay to give added rigidity and weatherproofing. The roofs have not survived, but the structures were probably covered with crude thatch or bundled reeds. Both round and rectangular forms are found, usually with central hearths.


Heavier timber buildings also appeared in Neolithic (New Stone Age) cultures, although the difficulties of cutting large trees with stone tools limited the use of sizable timbers to frames. These frames were usually rectangular in plan, with a central row of columns to support a ridgepole and matching rows of columns along the long walls; rafters were run from the ridgepole to the wall beams. The lateral stability of the frame was achieved by burying the columns deep in the ground; the ridgepole and rafters were then tied to the columns with vegetable fibers. The usual roofing material was thatch: dried grasses or reeds tied together in small bundles, which in turn were tied in an overlapping pattern to the light wooden poles that spanned between the rafters. Horizontal thatched roofs leak rain badly, but, if they are placed at the proper angle, the rainwater runs off before it has time to soak through. Primitive builders soon determined the roof pitch that would shed the water but not the thatch. Many types of infill were used in the walls of these frame houses, including clay, wattle and daub, tree bark (favored by American Woodland Indians), and thatch. In Polynesia and Indonesia, where such houses are still built, they are raised above the ground on stilts for security and dryness; the roofing is often made of leaves and the walls are largely open to allow air movement for natural cooling. Another variation of the frame was found in Egypt and the Middle East, where timbers were substituted for bundles of reeds.

Saturday, February 22, 2014

Building Construction

Building Construction

The techniques and industry involved in the assembly and erection of structures, primarily those used to provide shelter. Building construction is an ancient human activity. It began with the purely functional need for a controlled environment to moderate the effects of climate. Constructed shelters were one means by which human beings were able to adapt themselves to a wide variety of climates and become a global species.




Human shelters were at first very simple and perhaps lasted only a few days or months. Over time, however, even temporary structures evolved into such highly refined forms as the igloo. Gradually more durable structures began to appear, particularly after the advent of agriculture, when people began to stay in one place for long periods. The first shelters were dwellings, but later other functions, such as food storage and ceremony, were housed in separate buildings. Some structures began to have symbolic as well as functional value, marking the beginning of the distinction between architecture and building.
The history of building is marked by a number of trends. One is the increasing durability of the materials used. Early building materials were perishable, such as leaves, branches, and animal hides. Later, more durable natural materials such as clay, stone, and timber and, finally, synthetic materials such as brick, concrete, metals, and plastics were used. Another is a quest for buildings of ever greater height and span; this was made possible by the development of stronger materials and by knowledge of how materials behave and how to exploit them to greater advantage. A third major trend involves the degree of control exercised over the interior environment of buildings: increasingly precise regulation of air temperature, light and sound levels, humidity, odors, air speed, and other factors that affect human comfort has been possible. Yet another trend is the change in energy available to the construction process, starting with human muscle power and developing toward the powerful machinery used today.
The present state of building construction is complex. There is a wide range of building products and systems which are aimed primarily at groups of building types or markets. The design process for buildings is highly organized and draws upon research establishments that study material properties and performance, code officials who adopt and enforce safety standards, and design professionals who determine user needs and design a building to meet those needs. The construction process is also highly organized; it includes the manufacturers of building products and systems, the craftsmen who assemble them on the building site, the contractors who employ and coordinate the work of the craftsmen, and consultants who specialize in such aspects as construction management, quality control, and insurance.